Reading and writing data

A short description of the post.

  1. Load the R packages we will use.
library(tidyverse)
library(here)
library(janitor)
library(skimr)
  1. Download Co2 emissions per capita from Our World in Data into the directory for this post.

  2. Assign the location of the file to file_csv. The data should be in the same directory as this file Read the data into R and assign it to emissions

file_csv <- here("_posts",
                 "2021-03-02-reading-and-wrting-data",
                 "co-emissions-per-capita.csv")

emissions <- read_csv(file_csv)
  1. Show the first 10 rows (observations of) emissions
emissions
# A tibble: 22,383 x 4
   Entity      Code   Year `Per capita CO2 emissions`
   <chr>       <chr> <dbl>                      <dbl>
 1 Afghanistan AFG    1949                    0.00191
 2 Afghanistan AFG    1950                    0.0109 
 3 Afghanistan AFG    1951                    0.0117 
 4 Afghanistan AFG    1952                    0.0115 
 5 Afghanistan AFG    1953                    0.0132 
 6 Afghanistan AFG    1954                    0.0130 
 7 Afghanistan AFG    1955                    0.0186 
 8 Afghanistan AFG    1956                    0.0218 
 9 Afghanistan AFG    1957                    0.0343 
10 Afghanistan AFG    1958                    0.0380 
# … with 22,373 more rows
  1. Start with emissions data THEN
tidy_emissions <- emissions %>% 
  clean_names()

tidy_emissions
# A tibble: 22,383 x 4
   entity      code   year per_capita_co2_emissions
   <chr>       <chr> <dbl>                    <dbl>
 1 Afghanistan AFG    1949                  0.00191
 2 Afghanistan AFG    1950                  0.0109 
 3 Afghanistan AFG    1951                  0.0117 
 4 Afghanistan AFG    1952                  0.0115 
 5 Afghanistan AFG    1953                  0.0132 
 6 Afghanistan AFG    1954                  0.0130 
 7 Afghanistan AFG    1955                  0.0186 
 8 Afghanistan AFG    1956                  0.0218 
 9 Afghanistan AFG    1957                  0.0343 
10 Afghanistan AFG    1958                  0.0380 
# … with 22,373 more rows
  1. Start with the tidy_emissions THEN
tidy_emissions %>% 
  filter(year==1996) %>% 
  skim()
Table 1: Data summary
Name Piped data
Number of rows 219
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 219 0
code 12 0.95 3 8 0 207 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 1996.00 0.00 1996.00 1996.00 1996.0 1996.00 1996.00 ▁▁▇▁▁
per_capita_co2_emissions 0 1 4.89 6.63 0.04 0.61 2.8 7.14 61.58 ▇▁▁▁▁
  1. 12 observations have a missing code. How are these observations different?
tidy_emissions %>% 
  filter(year == 1996, is.na(code))
# A tibble: 12 x 4
   entity                     code   year per_capita_co2_emissions
   <chr>                      <chr> <dbl>                    <dbl>
 1 Africa                     <NA>   1996                     1.07
 2 Asia                       <NA>   1996                     2.39
 3 Asia (excl. China & India) <NA>   1996                     3.23
 4 EU-27                      <NA>   1996                     8.77
 5 EU-28                      <NA>   1996                     8.94
 6 Europe                     <NA>   1996                     8.90
 7 Europe (excl. EU-27)       <NA>   1996                     9.04
 8 Europe (excl. EU-28)       <NA>   1996                     8.78
 9 North America              <NA>   1996                    14.3 
10 North America (excl. USA)  <NA>   1996                     5.03
11 Oceania                    <NA>   1996                    11.8 
12 South America              <NA>   1996                     2.19

Entities that are not countries do not have country codes

  1. Start with tidy_emissions THEN -use filter to extract rows with year == 1996 and without missing codes THEN
emissions_1996 <- tidy_emissions %>% 
  filter(year==1996, !is.na(code)) %>% 
  select(-year) %>% 
  rename(country = entity)
  1. Which 15 countries have the highest per_capita_co2_emissions?
max_15_emitters <- emissions_1996 %>% 
  slice_max(per_capita_co2_emissions, n = 15)
  1. Which 15 countries have the lowest per_capita_co2_emissions?
min_15_emitters <- emissions_1996 %>% 
  slice_min(per_capita_co2_emissions, n = 15)
  1. Use bind_rows to bind together the max_15_emitters and min_15_emitters
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
  1. Export max_min_15 to3 file formats
max_min_15 %>% write_csv("max_min_15.csv") # comma separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab separated
max_min_15 %>% write_delim("max_min_15.psv", delim = "|") # pipe separated 
  1. Read the 3 file formats into R
max_min_15_csv <- read_csv("max_min_15.csv") # comma separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated 
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") # pipe separated 
  1. Use setdiff to check for any differences among max_min_15_csv , max_min_15_tsv and max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# … with 3 variables: country <chr>, code <chr>,
#   per_capita_co2_emissions <dbl>

Are there any differences?

  1. Reorder country in max_min_15 for plotting and assign to max_min_15_plot_data
max_min_15_plot_data <- max_min_15 %>% 
  mutate(country = reorder(country, per_capita_co2_emissions))
  1. Plot max_min_15_plot_data
ggplot(data = max_min_15_plot_data, 
       mapping = aes(x= per_capita_co2_emissions, y = country)) +
  geom_col() +
  labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
       subtitle = "for 1996",
       x = NULL,
       y = NULL)

  1. Save the plot directory with this post
ggsave(filename = "preview.png",
       path = here("_posts", "2021-03-02-reading-and-wrting-data"))
  1. Add preview.png to yaml chunk at the top of this file

preview: preview.png

Footnotes